An application of the Daubechies Orthogonal Wavelets in Power system Engineering
نویسندگان
چکیده
Modern spectral and harmonic analysis is based on Fourier transforms. However, these techniques are less efficient in tracking the signal dynamics for transient disturbances in power system engineering. Consequently, the wavelet transform has been introduced as an adaptable technique for non-stationary signal analysis. Although the application of wavelets in the area of power system engineering is still relatively new, it is evolving very rapidly. In this paper Daubechies Orthogonal Wavelets based method for detection of faults in an ungrounded integrated power system Engineering (IPSE) of Navy ships is proposed. However the "Virtual ground" exists between the modules of IPS and ship hull, because of insulation capacitance of the cable and the EMI filters between the modules of the IPS. The fault current is very low for a single line to ground fault in this ungrounded system allowing
منابع مشابه
Application of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملOn the Distribution of Zeros for Daubechies Orthogonal Wavelets and Associated Polynomials
In the last decade, Daubechies orthogonal wavelets have been successfully used in many signal processing paradims. The construction of these wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with it should exhibit. In this paper, a subclass of polyn...
متن کاملLocating Zeros of Polynomials Associated With Daubechies Orthogonal Wavelets
In the last decade, Daubechies orthogonal wavelets have been successfully used and proved their practicality in many signal processing paradigms. The construction of these wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with them should exhibit. I...
متن کاملOn the Zeros of Daubechies Orthogonal and Biorthogonal Wavelets
In the last decade, Daubechies’ wavelets have been successfully used in many signal processing paradigms. The construction of these wavelets via two channel perfect reconstruction filter bank requires the identification of necessary conditions that the coefficients of the filters and the roots of binomial polynomials associated with them should exhibit. In this paper, orthogonal and Biorthogona...
متن کامل2 Ronald a . Devore And
The subject of “wavelets” is expanding at such a tremendous rate that it is impossible to give, within these few pages, a complete introduction to all aspects of its theory. We hope, however, to allow the reader to become sufficiently acquainted with the subject to understand, in part, the enthusiasm of its proponents toward its potential application to various numerical problems. Furthermore, ...
متن کامل